
University of California, Berkeley
Physics 110B Spring 2001 Section 1 (Strovink)

SOLUTION TO FINAL EXAMINATION

Directions. Do all six problems, which have unequal weight. This is a closed-book closed-note exam
except for three 8 1

2 × 11 inch sheets containing any information you wish on both sides. Calculators
are not needed. Use a bluebook. Do not use scratch paper – otherwise you risk losing part credit.
Cross out rather than erase any work that you wish the grader to ignore. You must justify what
you do or say. Express your answer in terms of the quantities specified in the problem. Box or circle
your answer. Remember that when you are asked for the value of a vector quantity, you must supply
both the magnitude and direction.

1. (40 points)
The total power P (t) radiated by an ideal elec-
tric dipole p(t) is given by the Larmor formula

P (t) =
1
4πε0

2|p̈(tret)|2
3c3

,

where tret is the retarded time.

(a) (15 points) Consider a single positive charge
e located at position (x, y, z) = (d, 0, d cosωt),
where d and ω are constants. Approximate
d � λ, where λ is the vacuum wavelength of
the emitted radiation. Working to second order
in the small quantity d/λ, compute the time-
averaged power 〈P 〉 radiated by this charge.
Solution:
Applying the Larmor formula to an electric
dipole

P =
1
4πε0

2|p̈(tret)|2
3c3

=
1
4πε0

2e2d2ω4 cos2 ωtret
3c3

〈P 〉 = 1
4πε0

e2d2ω4

3c3
.

(b) (10 points) How much time-averaged me-
chanical work per unit time 〈dW/dt〉 must be
exerted upon this charge in order to keep it mov-
ing as specified in (a)?
Solution:
The mechanical work done on the charge per
unit time would need to supply the power that
it radiates. Thus

〈dW/dt〉 = 〈P 〉 = 1
4πε0

e2d2ω4

3c3
.

This answer may also be obtained by considering
the radiation reaction force on the charge.

(c) (15 points) A second positive charge e is
added, located at position (−d, 0,−d cosωt).
What is the new time-averaged power 〈P ′〉 radi-
ated by both charges? Continue to work only to
second order in the small quantity d/λ.
Solution:
The second charge is located on the opposite
side of the origin with respect to the first charge.
Thus it cancels the electric dipole moment due
to the first charge. Higher-order multipole ra-
diation may remain, but such contributions will
be raised to higher powers of d/λ. Therefore, to
the same order in d/λ, 〈P ′〉 vanishes.

2. (35 points)
A plane electromagnetic wave is described by

E(z, t) = Re
(
Ẽ exp

(
i(kz − ωt))) ,

where

Ẽ = E0

(
(2− i)x̂+ (1− 2i)ŷ)

,

and E0, k, and ω are real constants. A linear
polarizer is placed in the beam, and oriented so
that the largest possible fraction of the original
beam’s irradiance is transmitted. What is that
fraction?
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Solution
The beam is described by the (unnormalized)
Jones vector

J ≡
(
2− i
1− 2i

)
.

A linear polarizer with transmission axis oriented
along the x̂ direction has the Jones matrix

M(0) ≡
(
1 0
0 0

)
.

If the polarizer’s transmission axis is oriented at
angle φ with respect to the x̂ direction, it is
represented by the Jones matrix

M(φ) = R−1M(0)R

=
(

cos2 φ sinφ cosφ
sinφ cosφ sin2 φ

)
,

where the two-dimensional rotation matrix is

R ≡
(
cosφ sinφ
− sinφ cosφ

)
.

Before the polarizer, the beam irradiance I is
proportional to

I ∝ J†J

= ( 2 + i 1 + 2i )
(
2− i
1− 2i

)

= (4 + 1) + (1 + 4) = 10 .

After the polarizer, the irradiance I ′ is propor-
tional to

I ′ ∝ (MJ)†MJ
= J†(M†M)J .

But M†M = M , as can easily be verified:
M† = M , and adding a second ideal polar-
izer does nothing beyond the effect of the first,
so M2 =M . Thus

I ∝ J†MJ
= ( 2 + i 1 + 2i )×

×
(

cos2 φ sinφ cosφ
sinφ cosφ sin2 φ

) (
2− i
1− 2i

)

= 5 + 8 sinφ cosφ
= 9 (max)

when φ = π/4. Therefore, at maximum, I ′/I =
9/10.

3. (35 points)
A plane wave U0 cos (kz − ωt) is incident nor-
mally on a screen. Fraunhofer conditions apply.
The diffracted wave is observed from z → ∞ at
various angles θ with respect to the z axis.

(a) (15 points) Assume that the screen has three
long parallel slits with equal spacing b and equal
negligible width. Compute the irradiance ratio
I(θ)/I(θ = 0).
Solution:
In analogy to the standard double slit problem,

U(θ) ∝ 1 + eiβ + e−iβ ,

where β = kb sin θ. Therefore

U(θ) ∝ 1 + 2 cosβ
I(θ)
I(0)

=
(1 + 2 cosβ)2

9
.

This result is equivalent to 1
9 sin

2 (3γ)/ sin2 γ,
where γ = β/2.

(b) (20 points) Instead assume that the screen
has five long parallel slits with equal spacing b.
The slit widths are still negligible; however, they
are a function of the slit location, so that the five
slit areas vary according to the ratio 1:2:3:2:1.
Compute the irradiance ratio I(θ)/I(θ = 0).
Solution:
This configuration is equivalent to a triple-
superposition of the triple-slit problem in (a),
with the characteristic spacing of the superpo-
sition equal to the characteristic spacing of the
slit. Therefore it is a convolution of the ar-
rangement in (a) with itself. Under Fraunhofer
conditions, the image is a Fourier transform of
the aperture function, and the Fourier transform
of a convolution is the product of the individual
Fourier transforms. Therefore

I(θ)
I(0)

=
(1 + 2 cosβ)4

81
.
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This answer may also be obtained by the brute
force methods of (a).

4. (20 points)
A Survivor contestant tries to signal a blimp hov-
ering nearly overhead. It is pitch dark, and his
only source of light is an infinitesimal, monochro-
matic, isotropic-light-emitting diode (LED). The
naked LED isn’t quite bright enough to be
seen by his blimp-borne rescuer. Remembering
Physics 110B, the contestant resolves to amplify
the light signal that the rescuer perceives.

(a) (10 points) The contestant stretches a large
opaque plastic sheet over a flat frame and pokes
a small (couple of mm dia) circular hole in it. He
carefully positions the hole directly between the
LED and the blimp, separated from the LED by
a couple of meters. Relative to the naked LED, is
it possible that the irradiance seen by the rescuer
increases? If so, by what maximum factor?
Solution:
The hole could consist of an odd number of
Fresnel zones (one zone would be convenient,
given the rough dimensions), in which case the
irradiance seen by the rescuer would be boosted
by a factor of ≈ 4.
(b) (10 points) Lacking a plastic sheet, the con-
testant disassembles his bicycle hub to obtain a
small (couple of mm dia) blackened steel ball.
Using a spiderweb thread, he carefully hangs the
ball directly between the LED and the blimp,
separated from the LED by a couple of meters.
Relative to the naked LED, is it possible that
the irradiance seen by the rescuer increases? If
so, by what maximum factor?
Solution:
Using the edge of the ball (as opposed to R = 0)
as the beginning of the first Fresnel zone, and
adding up the contributions of the zones, the
irradiance seen by the rescuer would be approx-
imately the same as if the ball were removed.
Therefore the irradiance seen by the rescuer
would not increase.
This result can also be obtained by use of Babi-
net’s argument.

5. (35 points)
In the Drüde model for electromagnetic wave

propagation in a dilute material medium, elec-
trons (of mass m and charge −e) satisfy the
equation of motion

mẍ = −γmẋ− kx− eEx ,

where γ is an effective damping constant, k is an
effective spring constant, and Ex is an electric
field component.

Working at a particular angular frequency ω,
and defining the complex electric field Ẽx and
complex current density J̃x through

Ex ≡ Re(Ẽx exp (−iωt)
)

Jx ≡ Re(J̃x exp (−iωt)
)
,

one can then define the complex conductivity σ̃
through

J̃x ≡ σ̃Ẽx .

In a medium having N electrons/m3 that are so
weakly bound that k is negligible, use the above
information to derive the complex conductivity
σ̃ as a function of angular frequency ω.
[Hint: Define x ≡ Re(x̃ exp (−iωt)).]
Solution:
Substituting

x ≡ Re(x̃ exp (−iωt)) ,
in the equation of motion, and neglecting k with
respect to γmω in view of the negligibly weak
binding, we obtain

−mω2x̃ = iγmωx̃− eẼx

x̃ =
eẼx/m

ω2 + iγω
.

Solving for J̃x,

Jx = −eNẋ
⇒ J̃x = iωeNx̃

=
iωNe2Ẽx/m

ω2 + iγω

σ̃ ≡ J̃x

Ẽx

=
Ne2/m

γ − iω .
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6. (35 points)
A point charge e travelling on the z axis has
position

r(t) = +ẑβct (t < 0)
= −ẑβct (t > 0) ,

where β is a positive constant that is not � 1.
That is, the charge reverses direction instanta-
neously at t = 0, while it is at the origin. The
fields that the charge produces are viewed by an
observer at (x, 0, 0), where x > 0.

(a) (20 points) What magnetic field B does the
observer see at t = 0?
Solution:
At t = 0, the magnetic field observed at (x, 0, 0)
was produced by the charge when it was at tret <
0, when it was still moving in the positive z di-
rection. Therefore this is the field of a uniformly
moving charge. To evaluate it, we first obtain
the field in a (primed) coordinate system with its
origin attached to the charge. In the primed sys-
tem, the observer is located at the coordinates
(x′, y′, z′) = (x, 0, γz − γβct) = (x, 0, 0). There
the (purely electrostatic) field is given by

E′ = x̂
e

4πε0x2
.

In the lab frame, using the Lorentz transforma-
tion for electromagnetic fields, the magnetic field
is given by

B‖ = B′
‖ = 0

cB⊥ = γcB′
⊥ + γ$β ×E′

⊥

= 0 + γβ
e

4πε0x2
ẑ× x̂

B⊥ =
γβ

c

e

4πε0x2
ŷ .

At this observation point the ŷ direction is the
same as the φ direction, as one expects.

This answer may also be obtained by using
the standard expressions for the electromag-
netic field of a uniformly moving point charge,
e.g. Griffiths 10.68-10.69.

(b) (15 points) At time t such that ct = x (ex-
actly!), what is the direction of the electric field
E seen by the observer? (You need consider only

the part of the total electric field which is domi-
nant at exactly that time.) Justify your answer.
Solution:
At t = x/c, the retarded time is tret = 0. So
the fields seen by the observer are the fields of
a charge that is reversing the direction of its
velocity (with infinite acceleration in this case).
Therefore the fields at this time are dominated
by the acceleration fields. For a charge accelerat-
ing along ẑ, E is in the θ̂ direction, or −ẑ for this
observer. However, in this problem the charge
accelerates in the −ẑ direction, so E is along +ẑ.
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